1. Hemingway J, Field L, Vontas J. (2002). An overview of insecticide resistance. Science, 298(5591): 96-97. https://doi.org/10.1126/science.1078052
2. USEPA (2011). Pesticide news story: EPA releases report containing latest estimates of pesticide use in the United States, United States Environmental Protection Agency. Retrieved March 23, 2013.
3. Russell R J, Claudianos C, Campbell P M, Horne I, Sutherland T D, Oakeshott J G. (2004). Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pesticide Biochemistry and Physiology, 79(3): 84-93. https://doi.org/10.1016/j.pestbp.2004.03.002
4. Sparks T C, Nauen R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121: 122-128. https://doi.org/10.1016/j.pestbp.2014.11.014
5. Safi N H Z, Ahmadi A A, Nahzat S, Ziapour S P, Nikookar S H, Fazeli-Dinan M, Enayati A, Hemingway J. (2017). Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malaria journal, 16(1): 1-10. https://doi.org/10.1186/s12936-017-1744-9
6. Yang M, Zhang J, Zhu K, Xuan T, Liu X, Guo Y, Ma E. (2009). Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 71(1): 3-15. https://doi.org/10.1002/arch.20254
7. Montella I R, Schama R, Valle D. (2012). The classification of esterases: an important gene family involved in insecticide resistance-A review. Memorias do Instituto Oswaldo Cruz, 107(4): 437-449. https://doi.org/10.1590/S0074-02762012000400001
8. Tiwari S, Stelinski L L, Rogers M E. (2012). Biochemical basis of organophosphate and carbamate resistance in Asian citrus psyllid. Journal of Economic Entomology, 105(2): 540-548. https://doi.org/10.1603/EC11228
9. Wang M, Xing L, Ni Z, Wu G. (2018). Identification and characterization of ace1-type acetylcholinesterase in insecticide-resistant and-susceptible Propylaea japonica (Thunberg). Bulletin of entomological research, 108(2): 253. https://doi.org/10.1017/S0007485317000682
10. Ismail S. (2019). Field evaluation of recommended compounds to control some pests attacking cotton and their side effects on associated predators. J. Biol. Chem. Res, 36: 113-121.
11. Bentivenha J P, Rodrigues J G, Lima M F, Marçon P, Popham H J, Omoto C. (2019). Baseline susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) to SfMNPV and evaluation of cross-resistance to major insecticides and Bt proteins. Journal of Economic Entomology, 112(1): 91-98. https://doi.org/10.1093/jee/toy342
12. Su J, Sun X-X. (2014). High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop protection, 61: 58-63. https://doi.org/10.1016/j.cropro.2014.03.013
13. Miles M, Lysandrou M. (2002). Evidence for negative cross resistance to insecticides in field collected Spodoptera littoralis (Boisd.) from Lebanon in laboratory bioassays. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 67(3): 665-669. PMID: 12696435
14. Zaazou M, Ali A, Abdallah M, Riskallah M. (1973). In vivo and in vitro inhibition of cholinesterase and aliesterase in susceptible and resistant strains of Spodoptera littoralis. Bull. Entomol. Soc. Egypt. Econ, 7: 25-30.
15. Ismail S M. (2013). Biochemical effects of some insect growth regulators on field strains of the cotton Leafworm, spodoptera littoralis. Journal of Plant Protection and Pathology, 4(10): 837-844. https://doi.org/10.21608/jppp.2013.87496
16. Van Asperen K. (1962). A study of housefly esterases by means of a sensitive colorimetric method. Journal of insect physiology, 8(4): 401-416. https://doi.org/10.1016/0022-1910(62)90074-4
17. Classics Lowry O, Rosebrough N, Farr A, Randall R. (1951). Protein measurement with the Folin phenol reagent. J Biol chem, 193: 265-275.
18. Kim J-H, Cho S Y, Lee J-H, Jeong S M, Yoon I-S, Lee B-H, Lee J-H, Pyo M K, Lee S-M, Chung J-M. (2007). Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain research, 1136: 190-199. https://doi.org/10.1016/j.brainres.2006.12.047
19. Pasteur N, Georghiou G P. (1989). Improved filter paper test for detecting and quantifying increased esterase activity in organophosphate-resistant mosquitoes (Diptera: Culicidae). Journal of Economic Entomology, 82(2): 347-353. https://doi.org/10.1093/jee/82.2.347
20. Oakeshott J, Claudianos C, Campbell P, Newcomb R, Russell R. (2010). Biochemical genetics and genomics of insect esterases. Comprehensive molecular insect science. Volume, 5: 392 pages.
21. Ismail S. (2008). Biochemical studies of Na+, K+-ATPase and acetylcholinesterase sensitivity to phenothrin and thiodicarb among different Egyptian field populations of Spodoptera littoralis. Alex. Sic. Exchange J, 29: 26-35. https://doi.10.21608/ASEJAIQJSAE.2008.3179
22. Ismail S M. (2020). Research Article Joint Toxic Action of Spinosad with Fenpropathrin and Chlorpyrifos and its Latent Effect on Different Egyptian Field Populations of Spodoptera littoralis. Asian Journal of Biological Sciences, 13(4): 328-334. https://doi.org/10.3923/ajbs.2020.328.334
23. Ismail S M. (2020). Effect of sublethal doses of some insecticides and their role on detoxication enzymes and protein-content of Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). Bulletin of the National Research Centre, 44(1): 1-6. https://doi.org/10.1186/s42269-020-00294-z
24. Basnet K, Bahadur M, Mukhopadhyay A. (2017). Change in activity of detoxifying enzymes in directionally selected population of tea mosquito bug (Helopeltis theivora)(Heteroptera: Miridae) by an organophosphate insecticide. Phytoparasitica, 45(4): 527-539. https://doi.org/10.1007/s12600-017-0603-0
25. Tian F, Mo X, Rizvi S A H, Li C, Zeng X. (2018). Detection and biochemical characterization of insecticide resistance in field populations of Asian citrus psyllid in Guangdong of China. Scientific reports, 8(1): 1-11. https://doi.org/10.1038/s41598-018-30674-5
26. Haddon C, Lewis J. (1996). Early ear development in the embryo of the zebrafish, Danio rerio. Journal of Comparative Neurology, 365(1): 113-128. https://doi.org/10.1002/(SICI)1096-9861(19960129)365:13.0.CO;2-6